Tag Archives: micro:bit

[Micro:bit] BOSON電子積木呼吸燈條

生活中,您是否有注意到有些燈光除了「開關」與「閃爍」外,還有如同「呼吸」一樣的變化呢?「呼吸」的意思是指,像波浪一樣有著高低起伏,應用在燈光上,就會變成漸漸變亮與漸漸變暗的效果。今天要為大家介紹使用Micro:bit控制BOSON燈條,達到「呼吸燈」的效果。

作者/攝影

撰寫:郭皇甫

攝影:郭皇甫

文章分類教學技術文
時間30mins
成本
難度**(1~10)
材料表

  請先將Micro:bit與Micro:bit擴充板準備好,接著將「彩色LED燈條模組」接上P1引腳。硬體設置好後,就可開始編寫程式,程式的概念很簡單,我們要做到的是讓燈條亮度慢慢增加,再慢慢減少,並且一直重複這個模式,請依照下列步驟進行:

 

Step1:初始化引腳與變數。首先找到【變數】→【建立變數】,將新變數命名為「light」後,找到「變數item設為0」方塊,設定item為light,並將方塊放入「當啟動時」內。接著找到【引腳】→「類比信號寫入」與「對應…從低…從高…到低…到高」方塊,將「引腳」改為P1,並將「對應…從低…從高…到低…到高」方塊放入「類比信號寫入」的「數字」內,並設定好「對應…」方塊內的數值(如圖2所示)

圖1 建立變數

 

圖2 類比信號寫入與對應方塊

 

圖3 設定對應方塊內的數值

 

Step2:重複燈條漸亮、漸暗。要讓燈條達到漸亮的效果,您可以從「如何讓數值變大」的方向來思考。首先,引腳的數值決定了燈條的亮度,若數值愈大,燈條的亮度愈高,而在Step1時,我們已經將P1的腳位數值對應到「變數light」中,並且將數值範圍從0~1023改為0~255,這樣的方式也可以讓數字變得較好計算。所以,當「變數light」的數字為0,亮度最小,反之亮度最大。瞭解後,我們要來做一些簡單的加減運算。

 

a.變數light每次加5。從【變數】找到「變數設為」與「light」方塊,並將item改為light;從【數學】找到「+」方塊,並接在「變數設為」方塊的後方,將「+」後方的數字改為5。(如圖4所示)

圖4 變數加5

 

b.變數light每次減5。與上述唯一不同的地方是使用「-」方塊,而不是「+」方塊。(如圖5所示)

圖5 變數減5

 

c.重複次數。不論是加5或是減5,只要各重複51次,即能達到最大255與最小0,因此,請找到【迴圈】裡的「重複…次…執行」,將次數改為51。(如圖6所示)

圖6 重複執行51次

 

d.數位引腳讀取數字。將變數light的數字設定好重複執行累加與累減後,我們還要將變數light每次得到的數字放進P1腳位裡,所以在這邊我們放進「類比信號寫入」的方塊,將「引腳」改為P1、「數字」改為「light」。(如圖7所示)

圖7 類比信號寫入

 

e.加入延遲秒數。最後,我們從【基本】找到「暫停(ms)」方塊,將數字改為30,並接在「類比信號寫入」的下方。(如圖8所示)

圖8 加入延遲秒數

 

  最後,完整的程式碼如下:

圖9 完整程式碼

 

  將程式碼下載到Micro:bit上,看看燈條是否會漸亮、漸暗了呢?您也可以試著使用BOSON的旋鈕直按控制燈條,也能達到漸亮、漸暗的效果喔!今天的介紹就到這邊,下次還會有哪些好玩的應用呢?敬請期待喔!

 

相關文章

[ 2018小小自造者冬令營-Boson篇 ] 2018.1.29-2.2小朋友的創作魂大爆發!!

當小朋友遇上Boson電子積木套件,會花生什麼事呢?

在CAVEDU教育團隊主辦的「2018小小自造者冬令營」就真實上演喔!

答案讓你猜一猜:

  • 小朋友大爆走
  • 小朋友鴉雀無聲、啞口無言
  • 小朋友創意大爆發,製造出馬力歐宇宙

答案會是什麼呢?

作者/攝影宗諭 / 楨詒、怡婷
課程時間2018.1.29-2.2
課程講師 品叡、楨詒、皓云、怡婷、偉伶
課程場地CAVEDU教育團隊大本營

 

Boson是由DFRobot開發出來的電子積木套件,也就是藉由一個一個的電子積木,讓孩子與想要學習電子電路原理的初學者們,能夠以更簡潔明確的方式學習。

因為在Boson的電子積木套件中,提供了And、Or、Not的邏輯方塊,所以,小朋友可以透過Boson學習數位邏輯,體驗數位邏輯的符號運用。在此,先簡介一下數位邏輯,讓大家有個初步了解。數位邏輯又稱邏輯閘,就是當我們把一個或多個電子訊號,比方說電壓或電流,輸入一個電子電路,然後這個電子電路透過本身的運算,可以產生出輸出訊號,那麼這個電子電路就是一個邏輯閘。

數位系統中的電子訊號,例如我們剛剛提到的電壓或電流,在數位系統中都只有兩種數值,就是0跟1。比如說,我們可以將高的電壓定義成邏輯1, 而將低的電壓定義成邏輯0。所以,在一個數位系統中最簡單的運算就是邏輯運算,而負責邏輯運算最基本的元件就是邏輯閘。

日常生活中有什麼地方會運用到數位邏輯呢?比方說,我們每天都會用到的電腦,它的主機板就是由許多的邏輯閘所組成;還有我們出國會搭乘的飛機,上面的許多航空儀器,也都是由許多邏輯閘所組成。

與過去極為不同的是,以往台灣的教育較為重視記憶和考試,透過這樣的方式教導學生數位邏輯。然而,現今Boson把邏輯閘實化成為實際可動手玩、體驗的積木,孩子從小便習慣使用,長大後自然對邏輯閘的概念不陌生。

 

超興奮,用Boson做自己的夢想成品

於是,在這次「2018小小自造者冬令營-電力公司」第三天的活動中,CAVEDU教育團隊就讓小朋友們親自動手體驗Boson積木的樂趣,小朋友可說是超興奮完全停不下來!

1 小朋友興奮無比玩Boson積木

2 玩積木停不下來

當天上午,講師先講解Boson的顏色,然後拿出按鈕、組版、跑燈、燈條,讓小朋友親手接起來,他們必須了解積木間方向的關係,才能成功把LED燈接好。接下來,就是讓孩童把自己想要的積木樣式做出來,完成後配合感測器執行動作,製造出他們心目中的魔法棒。

3 LED燈接好

4 點亮了!YA

超能力,小朋友打造馬力歐之宇宙

然而,小朋友們的創意可說是火力全開,大人設定的框架完全限制不了他們!因為Boson可與積木結合,所以小朋友的作品多半與造型積木連結。從一開始的槍、機器人,至後來完全爆發Maker自由創作的精神。

5 Boson積木創作——機器人

6 Boson積木創作——

因有位小朋友最近常在家中與爸爸打「超級馬力歐」電玩遊戲,所以在他的大力吆喝下,大家開始製作電玩遊戲「超級馬力歐」中各式各樣的道具,包括,黃色神秘道具箱、蘑菇、金幣,最後完全一發不可收拾,搭配上Boson積木的聲光效果,幾乎完成一個作品,連教課的講師們皆十分咋舌小朋友充沛的創作力。

7 馬力歐的黃色神秘道具箱

8 馬力歐宇宙

下午則是教導邏輯閘,雖然是比較抽象的概念,但因Boson十分直覺化,所以小朋友們只要按一按、玩一玩,就能搞懂數位邏輯中的And、Or、Not的觀念。

 

超直覺,麻瓜完全可以無痛就上手

然而,Boson可不只是教小朋友好用而已喔!因為DFRobot還有針對最近在Maker界很火紅的micro:bit,推出Boson kit套件包(micro:bit需另購),內附一片micro:bit擴充版,上面有電源開關、六個周邊接頭、音量鍵及耳機插孔。套件包內還提供許多有趣範例,可以立即動手實作。當然,Maker們更可以透過這片擴充板與micro:bit充分結合,找出更多創意十足的玩法。

總而言之,Boson這套電子積木套件提供了非常直覺化的學習方式,讓在這方面自認為麻瓜的朋友們,完全可以無痛上手!

相關文章:

[Micro:bit] 使用DFROBOT BOSON套件設計智慧小屋

在本篇文章中,我們將介紹如何用micro:bit和DFROBOT BOSON套件打造智慧小屋,套件上安裝孔位與樂高相容,組裝上更方便了。

我們將實做三個特別的功能,第一個是能夠根據環境光源自動調整亮度的LED燈,第二是設計一個可以按鈕控制吊扇,第三則是做出一個地震警報器。

作者/攝影  袁佑緣
時間  3小時
成本 放課後的製作時間便是我的成本
難度  * * *
材料表
  • Micro:bit
  • 樂高積木
  • Micro:bit Boson 擴充板

準備工作

Microbit and Boson Kit

 

在這篇文章中,我們將使用BBC推出的Micro:bit開發板來當作是我們智慧屋的控制器。

為了要能夠控制智慧屋中的電子元件,也就是上面的感測器與制動器,除了原本的Micro:bit之外,我們還要額外裝上一塊DFRobot推出的Boson擴充板來控制Boson Kit中的電子模組。

如果讀者想獲得關於 Boson Kit更進一步的資訊的話,不妨去以下的網站觀看詳細的介紹喔。 (https://www.dfrobot.com/boson).

以下是我們在本篇文章中,我們將會用到的Boson電子積木有LED、按鈕、傾斜、風扇、聲音、光感應。

1.Light Sensor Module
2.LED Module
3.Button Module
4.Fan Module
5.Tilt Sensor Module
6.Buzzer Module

Mu editor

接下來,為了要撰寫micro:bit的micro python 程式碼,我們需要去下載以下的編輯器:Mu Editor(https://github.com/mu-editor/mu/releases).

此外,我們也建議讀者可以去官方的文件查看Micro Python API for Micro:bit (https://microbit-micropython.readthedocs.io/en/0.9/)的詳細使用說明,裡面還有許多的範例教學可以參考喔!

硬體

以下的圖片是本文所使用的雙層樂高屋以及樂高屋內部的構造。

注意到除了一般水平放置的Boson元件可以接在樂高的平板上,一些懸掛的Boson元件可以用其他的方式固定在樂高小屋上面,例如下圖中使用BOSON的中間積木,我們使用金屬螺絲與螺絲帽固定,底座固定之後,Boson電子元件就可以用磁力吸附在上面。

範例教學

 

接下來我們就來在 Mu Editor中撰寫 Micro Python吧!

 

1. 小夜燈

在第一個範例中,我們將原本的LED燈擴充成可以自動調整亮度的LED燈,更進一步它能根據環境光的亮度適當地調整LED燈亮度。

於是我們要在LED燈上再加上一個光源感測器,如下圖。

首先,我們必須先用以下的程式碼來去偵測光源感測器的最大最小值,而為了要讓數值更精確一點,我們讓程式在一段時間內的對光感值進行取樣,將光感值加總後再依取樣的次數做平均,經過計算就能得我們想要的平均值。

 

night-light-measure.py

from microbit import *

light_sensor = pin1.read_analog()
counter = 0
timer = running_time()

while (running_time() - timer) <= 3 * 1000:
    light_sensor += pin1.read_analog()
    counter += 1

light_sensor /= counter
print("mean light sensor value: ", light_sensor)

打開Mu Editor的REPL視窗,並在有環境光跟沒有環境光的情況下執行程式,你將會得到如下圖的光源平均值,當環境光很亮時的平均亮值是900多,環境光很暗時的平均暗值10多。

接下來,我們將前面求出的平均亮值跟平均暗值,帶入到變數ligjt跟dark中,將這兩個數值作為最大值與最小值,是按照比例換算成Micro:bit的類比角為數值,控制LED燈的亮度。

 

算式:

((light – light_sensor)/(light – dark)*1023)

比如:light=966、dark=14,數值範圍為952。現在讀到一個光感數值為500,帶入算式((966-500)/(952))*1023 = 500,最後micro:bit的類比輸出值為500。

 

night-light.py

from microbit import *

light_sensor = pin1.read_analog()
counter = 0
timer = running_time()

light = 966.4033
dark = 14.81614

while True:
    light_sensor = pin1.read_analog()
    LED = int((light - light_sensor)/(light - dark)*1023)

    if LED > 1023:
        LED = 1023
    elif LED < 0:
        LED = 0

    print("LED lightness: ", LED)

    pin2.set_analog_period(1)
    pin2.write_analog(LED)
    sleep(0.5)

 

範例影片:

 

2. 吊扇設計

在第二個範例中,我們用以下簡單的程式碼來打造一個可以用按鈕控制的電風扇。

在程式中,我們用一個switch的布林變數紀錄開關的狀態,我們希望使用開關時,每次按下開關再放開,switch的狀態就會切換成相反的狀態。

注意到我們在以下的程式碼中會多加一些延遲,例如sleep(0.5),這是為了要確保可以正確的判斷到一次的開關按壓。

ceiling-fan.py

 

from microbit import *

switch = False

while True:
    if pin12.read_digital() is 1:
        while pin12.read_digital() is 1:
            sleep(0.5)
        switch = not switch
        if switch:
            pin16.write_digital(1)
            print("Turn ON")
        else:
            pin16.write_digital(0)
            print("Turn OFF")

 

3.地震警報器

 

在第三個範例中我們將實做一個安裝在小屋的地震警報器。

為了要偵測到小屋的晃動,我們使用一個傾斜感測器,並在每一次的迴圈中,觀察一小斷時間中的傾斜變化。

如果說屋子靜止不動的話,隨著時間的傾斜變化量應該是完全是零,所以我們只要去計算一段時間的變化是否為零的話,就能推出此時是否有地震的發生。

 

而如果偵測到有地震發生的話,程式會播放一段音樂作為地震的警報,播放音樂的方式直接使用Micro Python內建的music函式庫,music函式庫預設輸出聲音為0號腳位,驅動蜂鳴器發出聲音。

 

如果想自己設計音樂的話,不妨去以下網址查看micro python的範例(https://microbit-micropython.readthedocs.io/en/0.9/music.html),裡面有介紹如何用指定的音符做特定的旋律。

alarm.py

from microbit import *
import music

status = pin8.read_digital()

def detect_shake():
    old_tilt_status = pin8.read_digital()
    sleep(0.1)
    new_tilt_status = pin8.read_digital()
    return abs(new_tilt_status - old_tilt_status)

while True:
    counter = 0
    timer = running_time()
    shake = detect_shake()
    while (running_time() - timer) <= 500:
        shake += detect_shake()
        counter += 1

    status = shake/counter
    print(status)

    if status is not 0.0:
        print("Alarm!!!")
        music.play(music.DADADADUM)

 

範例影片:

 

相關文章:

 

 

[Micro:bit ] I/O腳位控制

本文要介紹BBC Micro:bit上的I/O腳位,讀取類比輸入腳位的變化之後來控制開發板上的LED matrix。做出類似長條圖的效果。

作者/攝影  曾吉弘
時間  3小時
成本
難度  * *
材料表
  • 個人電腦
  • BBC Micro:bit開發板
  • LED x1
  • 麵包板 x1
  • 跳線 x2

Micro:bit I/O腳位介紹

Microbit除了明顯的五個腳位(原廠稱為pad)之外,另外還有十多隻腳位,功能定義如下圖。在使用上就如同Arduino或其他的開發板一樣,數位I/O,類比I/O(PWM)、I2C與SPI功能,該有的都有。

在使用上,我們可以用鱷魚夾去夾住pad (0, 1 ,2, 3V GND這五個大的pad),但比較小的腳位在操作上就不是很方便,因為Microbit端建議使用DFRobot BOSON kit for Micro:bit,或是Seeed StudioGrove Inventor kit for micro:bit。如下圖是DFRobot BOSON kit for Micro:bit,您可以看到常用的腳位都做好防呆接頭,其他的腳位也有母座,直接接杜邦線就可以使用了。如果想要用Micro:bit來輸出音效的朋友,左下角的音源接頭,您一定會喜歡的啦。

硬體接線

請將可變電阻先插上麵包板,接著將中間腳位接到Micro:bit0號腳位(#0 pad),接著一側接地(GND)一側接電。

 

請注意Miro:bitGND腳位相當多,但在此使用比較好接的GND pad

Micro:bit程式

寫一個簡單的程式,按下A按鈕之後,會不斷讀取P0類比腳位的狀態(0~1023),如果P0<300的話,亮起 LED matrx 第一列,反之亮起1~4列。您可以自由修改這個判斷值與呈現的效果。

Javascript code

 

有興趣的朋友也可以轉成JavaScript來比較看看,慢慢就會進步喔

input.onButtonPressed(Button.A, () => {
   while (true) {
       if (pins.analogReadPin(AnalogPin.P0) < 300) {
           basic.showLeds(`
               . . . . .
               . . . . .
               . . . . .
               . . . . .
               # # # # #
               `)
       } else {
           basic.showLeds(`
               . . . . .
               # # # # #
               # # # # #
               # # # # #
               # # # # #
               `)
       }
       basic.pause(100)
   }
})

完工了!來試試看吧。確認腳位都沒接錯之後,請慢慢轉動可變電阻,看看LED matrix有沒有變化吧。

 

相關文章:

 

[App Inventor+Microbit小專題 ] 按鈕控制畫面小球

作者/攝影  曾吉弘
時間  3小時
成本
難度  * * * *
材料表
  • 個人電腦
  • App Inventor開發環境
  • 支援BLE的Android手機
  • BBC Micro:bit開發板

本文要介紹如何透過BBC Micro:bit開發板上的按鈕來控制App Inventor畫面上的小球左右移動,碰到畫面邊緣還會在Micro:bit LED matrix 上顯示對應的字樣。

 

範例 aia檔下載請按我

 

藍牙配對

 

Micro:bit端設定:

  1. 同時按住Microbit 正面A、B按鍵,不要放掉
  2. 按住A、B鍵時,把背面的Reset 鍵按下後再放開。
  3. 這時應該可以看到 “PAIRING MODE!” 以跑馬燈方式出現在Microbit LED 螢幕上,若看到這訊息,便可以放開A、B鍵。
  4. PAIRING MODE! 結束後,會看到一個圖形出現在Microbit LED 螢幕上,不同的Microbit 出現的圖案也不同,這是Microbit 不同裝置獨特的”簽名” (Signature) 。

  1. 這時候的Microbit 已經準備好跟其他裝置配對,請看以下影片教學

 

 

 

Android手機端設定:

  1. 進入Android手機的設定–>藍牙
  2. 確認Micro:bit 已進入配對模式
  3. 當Micro:bit上的‘PAIRING MODE!’ 顯示完,搜尋(每隻Android手機這個選項的文字不一定相同,但意思差不多),應該會看到類似 micro:bit [XXXXX]的選項,其中XXXXX 會根據每片micro:bit而不同。點選該裝置來配對。

4.micro:bit 會出現向左的箭頭,然後Android裝置上會跳出畫面要求輸入配對PIN碼的視窗。

5.按住Micro:bit 的按鍵A ,這時microbit 會連續出現六個數字,這就是配對碼。

6.回到Android裝置上,輸入這六個數字。如果Microbit 出現[V],代表配對成功。如果是[X]代表沒成功,請再試一次

 

編寫程式

匯入BLE 與 micro:bit extension

 

請登入MIT App Inventor官方網站,建立新專案,在Designer頁面中點選Palette左下角的Extension,再點選”Import extension“與”URL:

  1. 貼入以下兩個 extension link:

 

2. 請加入 Microbit_LedMicrobit_Button這兩個Microbit元件。兩者的BluetoothDevice 屬性設為 “BluetoothLE1″。這步驟很容易忘記,別漏掉了

  1. 加入四個按鈕放入 horizontalArrangement元件中,分別用於掃描、停止掃描連線與斷線

 

  1. 新增Canvas畫布元件(寬高各為320像素,底色隨意),再放入一個Ball元件。完成後Designer頁面如下圖(可以不用一模一樣)

Blocks頁面

 

本範例的基本概念是按下Micro:bit板子上的兩個按鈕可以控制小球左右移動,碰到Canvas邊緣會在LED矩陣上顯示對應的文字。開始吧:

STEP1: BLE連線成功後啟動Clockl元件

在BluetoothLE1.Connected事件中,首先啟動Clock.Timer(timer Interval 設為100),並顯示相關訊息,最後要求Micro:bit開始更新兩個按鈕的狀態。

STEP2:按下Micro:bit左側A按鈕

Microbit_Button1.ButtonAStateReceived事件中:

○如果按下了左側的A按鈕(Button_State_Value為true),則讓ball_X 變數值累減10。

○讓Ball1元件移動到(ball_X, 100),也就是左移10像素。

STEP3:按下Micro:bit右側B按鈕

現在看到右側的B按鈕,所做的事情幾乎一模一樣但是Ball1元件的移動方向是相反的。

Microbit_Button1.ButtonBStateReceived事件:

○如果按下了右側的B按鈕(Button_State_Value為true),則讓ball_X 變數值累加10。

○讓Ball1元件移動到(ball_X, 100),也就是右移10像素。

STEP4 Ball reached canvas’ edge

當小球碰到Canvas畫面四邊時,我們希望在Micro:bit的LED矩陣上顯示對應的文字。

Ball1.EdgeReached事件中,使用 if / else if 來檢查到底碰到了哪一邊,根據App Inventor的文件,1是北方,所以要透過Microbit_Led1.WriteLEDText指令來顯示’N’。其餘類推,請看下圖:

完工了!來試試看吧。請確認您的Micro:bit與Android已經配對好了。按下Microbit板子上的按鈕應該讓畫面上的小球左右移動,試試看讓小球去撞牆吧,看看有沒有顯示對應的文字。試試看用 Micro:bit LED 搭配 App Inventor 做出更多功能吧

 

 

相關文章:

[ Micro:bit開箱文] 手勢辨識Grove也有Micro:bit的擴充板套件了Grove Inventor Kit

Micro:bit 為英國廣播公司(BBC) 為推廣學齡兒童程式邏輯教育給所推出的簡潔版卡式開發硬體;外形小巧便於攜帶,在程式教學上的特點有著簡單好上手的介面,硬體上有內含幾款感測器可供單獨使用,以及其可擴充性接腳的設計可將其教育應用的觸角更加延伸。

作者/攝影  林德昀
時間  拆開包裝紙的時間
成本 約NT:1,900
難度  * * *
材料表
  • Grove Inventor Kit

本套件由創客界知名的 Seeed 為 Micro:bit 所推出符合 Grove 標準的模組化套件,一般在物聯網的學習上通常使用的麵包板及杜邦線會有較多接線上的出錯機會,而對於硬體較不熟悉的軟體初學者若使用此套件學習可事先排除很多上述的問題而可更直接專注於程式學習上。

本套件包含:

  1. 擴充母板
  2. 迷你喇叭模組
  3. 角度感測模組
  4. 超音波感測器模組
  5. 光感測器模組
  6. 防水三色發光二極體條
  7. 手勢感應器模組 (筆者認為最有可玩性的模組)
  8. 4 位數字顯示器
  9. 紅光 LED 模組
  10. micro USB 線
  11. 五色鱷魚夾線各2條 (黑、白、紅、綠、黃)
  12. 使用手冊

 

手勢辨識

Micro:bit 上 5×5 LEDs 顯示手勢方向

 

以手勢控制彩虹燈走向

(程式實作部分請期待另篇應用教學文)

 

1.擴充母板

將Micro:bit 的擴充腳位拉出,有給 Grove 4-pin 接頭×4, 以及可供鱷魚夾或香焦棒使用的接點:P0,P1,P2,P8,P12,P13,及3.3V和GND,左方還有PWR的電源指示LED,及僅使用於供電使用的Micro USB接頭 (無法寫入程式);右方中間有廷伸用的接頭目前尚未有其資料,待有新資訊後補充。

 

下圖為Micro:bit 放入後週邊使用其他配線的示意圖

  1. 迷你喇叭模組

可由此喇叭發出汽車,門鈴⋯⋯等,經由不同的頻率的輪入訊號,可得出多樣變化的聲音;此模組中有可供調整輪出音量的可變電阻。

 

  1. 角度感測模組

由10k 歐姆可變電阻組成的角度感測模組,變化角度可由0~300度。可在學習專案中控制音量或馬達轉速⋯⋯等。

 

4.超音波感測器模組

可由此模組以非接觸的方式測量距離,可學習依據不同的距離變化將變量經由Micro:bit轉化為光或聲音的不同變化。

 

5.光感測器模組

可檢測出光度的變化而輸出相對應的訊號,可學習依照訊號強弱的不同而控制LED閃爍⋯⋯等應用。

 

  1. 防水三色發光二極體條

由30顆3色LED 所組成1公尺長的LED 條,每一LED 可由程式獨立控制顯示不同色彩,其封裝具有防水性,可使用於戶外而無需擔心下雨淋溼的影響。

 

7.手勢感應器模組

具有識別 上、下、左、右、前、後、順時鐘、反時鐘及揮手共9種手勢的感測模組。其感測範圍於前方5~15公分,視角60度內的區域內。由於未有詳細資料,筆者猜其工作原理可能為以紅外光加上脈波調變及都卜勒效應所作的感測器。可由本模組實作手勢操作各項目應用,如切換音樂,調整音量,開關燈⋯⋯等。

 

脈波調變:以脈波的形態將訊號改變為所需要的波形,創客界常用的PWM即為一種工作時間寬度上的脈波調變;在實際生活中,各遙控器不相互干擾也是一種脈波調變的應用。

 

都卜勒效應:當接近或遠離時,會對觀察者造成測量頻率的變化;如火車接近時的鳴笛聲會較尖銳,而遠離時會較低沉。

 

  1. 四位數字顯示器

可於學習專案中用作顯示時間或實驗數值。

 

  1. 紅光 LED 模組

需注意LED腳位,若不亮時請檢查是否接反。

  1. 使用手冊

內含12種對於以上模組的基礎程式應用

 

相關文章:

[App Inventor+Microbit小專題 ] LED控制

作者/攝影  曾吉弘
時間  3小時
成本
難度  * * *
材料表
  • 個人電腦
  • App Inventor開發環境
  • 支援BLE的Android手機
  • BBC Micro:bit開發板

本文要介紹如何讓App Inventor 透過 BLE 來與最近非常熱門的BBC Micro:bit開發板互動。Micro:bit板子上已經具備了BLE藍牙通訊功能,搭配app Inventor寫好的micro:bit extesion,就能有更多互動的效果。本範例修改自 MIT App Inventor IoT網站之 Micro:bit範例

範例 aia檔下載請按我

藍牙配對

 

Micro:bit端設定:

  1. 同時按住Microbit 正面A、B按鍵,不要放掉
  2. 按住A、B鍵時,把背面的Reset 鍵按下後再放開。
  3. 這時應該可以看到 “PAIRING MODE!” 以跑馬燈方式出現在Microbit LED 螢幕上,若看到這訊息,便可以放開A、B鍵。
  4. PAIRING MODE! 結束後,會看到一個圖形出現在Microbit LED 螢幕上,不同的Microbit 出現的圖案也不同,這是Microbit 不同裝置獨特的”簽名” (Signature) 。

  1. 這時候的Microbit 已經準備好跟其他裝置配對,請看以下影片教學

 

 

 

Android手機端設定:

1.進入Android手機的設定–>藍牙

2.確認Micro:bit 已進入配對模式

3.當Micro:bit上的‘PAIRING MODE!’ 顯示完,搜尋(每隻Android手機這個選項的文字不一定相同,但意思差不多),應該會看到類似 micro:bit [XXXXX]的選項,其中XXXXX 會根據每片micro:bit而不同。點選該裝置來配對。

4.micro:bit 會出現向左的箭頭,然後Android裝置上會跳出畫面要求輸入配對PIN碼的視窗。

5.按住Micro:bit 的按鍵A ,這時microbit 會連續出現六個數字,這就是配對碼。

6.回到Android裝置上,輸入這六個數字。如果Microbit 出現[V],代表配對成功。如果是[X]代表沒成功,請再試一次

編寫程式來控制Micro:bit LED matrix

匯入BLE 與 micro:bit extension

 

請登入MIT App Inventor官方網站,建立新專案,在Designer葉面中點選Palette左下角的Extension,再點選”Import extension“與”URL:

  1. 貼入以下兩個 extension link:

 

2. 請加入 Microbit_Led 這個元件,這是一個非可視元件。並把它的 BluetoothDevice 屬性設為 “BluetoothLE1″。這步驟很容易忘記,別漏掉了

  1. 加入四個按鈕放入 horizontalArrangement元件中,分別用於掃描、停止掃描連線與斷線
  2. 加入一個說明訊息用的 label
  3. 加入一個 ListVeiw,當掃描到鄰近的BLE裝置時會顯示在這裡
  4. 新增一個 TextBox,在此輸入我們希望 micro:bit呈現的英文字(中文不行喔)
  5. 新增兩個按鈕,一個是 [Write to LED] 把 Textbox 內容丟給 micro:bit ,一個是[DrawSmiley],讓 Micro:bit 呈現我們所指定的點陣圖案。

Blocks頁面

  1. 掃描與連線

  1. 畫笑臉副程式

在此用一個副程式 DrawSmiley 來代表,我們會用一個 5 x 5 的數字陣列發給 Micro:bit,就能藉此顯示我們想要的圖形。

在此用到的是 Microbit_Led1.WriteLEDMatrixState指令搭配 binary to base 10 指令組合起來的 0101 陣列,1代表 LED亮起,0則是熄滅。仔細看看,這樣就是一個笑臉呢

0 1 0 1 0

0 1 0 1 0

0 0 0 0 0

1 0 0 0 1

0 1 1 1 0

  1. 發送Textbox內容到 Micro:bit

沒錯,就這麼簡單,直接把 Textbox內容透過 Microbit_Led1.WriteLEDText指令發送出去就好,但不能打中文喔

斷線

斷線時會呼叫 bluetoothLE元件來中斷藍牙連線,確認斷線之後則顯示相關訊息。

完工了!來試試看吧。請確認您的Micro:bit與Android已經配對好了。按下按鈕應該可以看到您在 Textbox 中輸入的文字(中文不行喔)以跑馬燈的形式出現在micro:bit 的 LED matrix 上。按下 smilley 按鈕應該也能看到笑臉圖案, 試試看用 Micro:bit LED 搭配 App Inventor 做出更多功能吧

 

相關文章:

 

完成如下圖:

[Micro:bit] 使用MicroPython與Boson套件設計智慧風扇

本篇文章將帶領讀者使用Microbit輕鬆打造一台小型的智慧風扇,有興趣的朋友不妨參考一下本文,一起來動手DIY吧!

作者/攝影  袁佑緣
時間  3小時
成本
難度  * * *
材料表
  • Micro:bit
  • 樂高積木
  • Micro:bit Boson 擴充版

 

介紹

本篇文章的主角是BBC推出的微型電腦micro:bit,有興趣的朋友不妨參考一下micro:bit的官方網站(http://microbit.org/),裡面有許多適合入門又豐富有趣的應用喔!

而為了要打造一台電動風扇,我們需要加裝額外的擴充版跟電子元件,本文所使用的是DFRobot推出的Boson擴充版,Boson是DFRobot 所推出的一系列電子套件,外型就像積木一樣,除了相容於LEGO之外,還可以用金屬羅絲固定,並且附有磁吸式的底座,容易組裝也容易拆卸,且電路的接口都有經過特別的設計,隨插及用,非常適合沒有電路基礎的小朋友們入門電子實做的世界!

 

想了解更多boson kit相關資訊的朋友,不妨去參考一下DFRobot的官方網站說明喔(https://www.dfrobot.com/blog-630.html)!

準備

經過前面的介紹,接下來我們就要來正式進入我們的實做部份了,首先我們在軟體以及硬體上做一些準備。

 

組裝擴充版

準備我們的micro:bit以及Boson擴充板,組裝圖如下,記得micro:bit的logo朝下面,有LED陣列的那面朝上喔,如果說到時候燒錄程式失敗的話,就會用LED陣列顯示出錯誤訊息。

micro:bit控制板

組裝micro:bit boson擴充板

組裝完成!

 

風扇製作

本範例的硬體主要是用LEGO來做,請參考下方的圖片,零件上用LEGO動力機械的基本套件就能完成囉,當然有興趣的朋友也可以自己DIY設計一個獨特風格的電風扇底座,只要記得上面要有四個boson的座,在待會的實做部份我們會慢慢放入感測器以及馬達、風扇。

軟體安裝

Micro:bit 預設的程式撰寫環境有兩種,一種是圖形化的JavaScript Blocks Editor,另外一種則是我們接下來用的MicroPython Editor。

Microbit let’s code 網站:http://microbit.org/code/

MicroPython 線上編輯器

 

 

MicroPython是將原本就容易學習的程式語言Python實做到為微控制板的架構上,好比說是micro:bit,以下是micro:bit MicroPython的詳細說明文件(http://microbit-micropython.readthedocs.io/en/latest/tutorials/introduction.html),裡面有詳細敘述許多的功能,以及API取用的方法,比起圖形化的Block Editor 來說雖然難度上升了一點,但是彈性也增加了,可以讓我們程式撰寫的功能範圍變得更廣!

MicroPython for micro:bit文件

 

除了使用剛剛在官網看到的線上版,也可以下載MicroPython文件中推薦的Mu Editor(https://codewith.mu/#download),這款編輯器主打簡單、易學,初學者只要專心在學習如何撰寫MicroPython上就好。

Mu 編輯器

 

除此之外,這個編輯器還是跨平台的,不只Windows平台上可以執行,macOS或者是Linux也可以,請讀者依照自己的作業系統環境來下載。

下載Mu Editor

 

下載完成後,打開來之後就會有如下圖的編輯器,當我們要上傳程式碼的時後,請先將micro:bit用usb線接到電腦上,再按下flash的按鈕就行囉!

實做

STEP1:控制馬達 

首先我們先加入Boson套件中的馬達,請裝在基座的正中間,組裝如下圖。

裝完馬達跟風扇之後,接下來請把Boson的訊號線接到micro:bit Boson擴充板的8號腳位上,也就是右上角的那個插座,如下圖。

再來請打開我們的Mu Editor,並打上以下的範例程式碼。

from microbit import *

mode = [700, 900, 1023]
while True:
    for speed in mode:
        print(speed)
        pin8.write_analog(speed)
        sleep(1000)

 

程式碼解說

首先從microbit這個Python函式庫中引入所有的函式,也就是把我們所需要的工具都加進這支程式當中。

接下來再宣告一個變數mode,為三個數字的串列(list),其實就是建造一個三段變速的電風扇,而裡面的數字大小代表的則是馬達的輸出馬力,數字越大就會越強,風力也越大,注意到1023是最高的馬力,而最低馬力700則是個建議的數值,太低的話有可能馬達會轉不到風扇,這點要特別注意喔!

最後我們有一個大大的while迴圈,裡面在包著一個for迴圈,所謂的迴圈就是會在某種條件下一直執行動作的意思,好比說while True就是一直迴圈,for speed in mode就是在三段變速中各執行一次的意思。

至於for迴圈裡面的所執行的動作,就是很直接的把我們的馬達設成三段變速中的速度囉!其中要注意的是,我們所使用是函式(function)是write_analog,意思就是用類比(analog)電壓去驅動我們風扇的馬達,因為用數位的模式就只有開跟關的模式,為了要做到變速的模式,才需要用到類比控制喔!

 

 

 

STEP2:開關控制 

有了馬達之後,我們學會了撰寫程式碼來控制電風扇,但是這樣在使用上可能還不夠直接,如果說我們要像生活中的電風扇一樣,可以有個按鈕來開關電風扇呢?這時候就需要加裝感測器(sensor)啦,請依照下方的組裝圖加上一個Boson套件的按鈕,並把它接到擴充版上的腳位12上。

以下是這個範例的程式碼。

from microbit import *

fan_switch = False
while True:
    if pin12.read_digital():
        fan_switch = not fan_switch
        print('ON' if fan_switch else 'OFF')
        pin8.write_digital(int(fan_switch))
        while pin12.read_digital():
            sleep(100)

 

程式碼解說

在這個範例中,我們把重點放在風扇的開關上,所以在控制轉動風扇的馬達時,我們使用的就不是像前面變速式的類比(analog)方式,而是開跟關兩種模式互相切換的數位(digital)方式,所以用的函式是用write_digital。

在程式中,我們有宣告一個變數fan_switch,用來儲存現在使用者控制風扇的按鈕狀態(第12號腳位),每當使用者按下開關又放開之後,就會改變一次fan_switch的狀態,有可能是從開的狀態轉成關(ON->OFF),或者是相反,只要我們把這個fan_switch變數轉成數字後丟到控制馬達的函式上,就能夠達到開關風扇的功能囉!

請參考下面的示範影片,讀者是否能能順利做到開關風扇呢?

https://youtu.be/QeR3TxfTs5g)

 

STEP3:風量調整

 

接下來我們來整合一下前面兩步的範例,除了要能夠開關之外,還要加入一個旋鈕來調整風力大小,讓這個風扇更加的貼近使用者!

請按照下圖,加裝一個Boson 旋鈕套件到風扇的基座上,並把訊號線接到擴充板的0號腳位上,也就是板子的左上角。

以下是這個範例的程式碼。

from microbit import *

fan_switch = False
fan_mode = ["slow", "medium","fast"]
fan_power = [700, 900, 1023]

def fan_mode_switch(value):
    interval = int(1023/3)
    for i in range(3):
        if value >= i * interval and value < (i+1)*interval:
            break
    return fan_mode[i], fan_power[i]

previous_mode, power = fan_mode_switch(pin0.read_analog())

while True:
    if pin12.read_digital():
        fan_switch = not fan_switch
        print('Fan status: ' + ('ON' if fan_switch else 'OFF'))
        while pin12.read_digital():
            sleep(100)
    if fan_switch:
        mode, power = fan_mode_switch(pin0.read_analog())
        if mode is not previous_mode:
            previous_mode = mode
            print("Fan mode: ", mode)
            pin8.write_analog(power)
    else:
        previous_mode = 'OFF'
        pin8.write_analog(0)
    sleep(300)

程式碼解說

程式好像比起前面兩個程式碼加起來多了不少,就讓我們慢慢來拆解看看是怎麼實作的吧!

首先我們比起STEP1中的三段變速又更明確的定義了馬力(fan_power)跟風速模式(fan_mode)了,並且我們用def定義了一個自己的函式出來,這個fan_mode_switch函式主要會從吃進來的value值,也就是我們旋鈕轉到的數值,來決定我們現在風扇的模式,並輸出對應的馬力值。

而我們是如何判斷風扇馬力的模式呢?其實就是把我們的旋鈕數值(0到1023)分成三等份,然後看看當下使用者轉到的數值是落那一個區間上,就把它對應到三種不同的風力模式(slow, medium, fast)。

最後,這隻範例程式碼還有一個小細節是值得初學者去注意的,當我們在切換模式的時候,我們都必須要注意只有當前一刻風力模式跟此刻轉到的風力模式時才需要去改變我們馬達的轉速,同時顯示的馬力大小才需要去更新,所以我們會用一個previous_mode變數來儲存上一刻的模式喔!

以下是我們的示範影片。

 

STEP4:智慧風扇

最後,我們還想要加入一些常見的風扇沒有的功能,來讓我們的小風扇更加的智慧化,並貼近使用者的使用環境。請依照下面的組裝圖加上一個Boson套件的motion 感測器,並把訊號線接到1號腳位上。

而什麼是motion sensor呢?其實就是所謂的PIR(Passive Infrared Sensor),常見的用途就是用來偵測人體的接近(靠著生物體的紅外線),有時候我們在逃生梯上下樓時,電燈自動會開啟其實就是因為有這種感測器,它會自動偵測有人在走動來自動打光。

而我們想要實做的功能就是除了STEP3中有的功能以外,還要加入一個情境,如果偵測到有人的話,例如說偵測到人的手,就會自動開啟電風扇,而不需要特地去壓按鈕還開電風扇,一起來看是如何實做的吧!

以下是這個範例的程式碼。

from microbit import *

fan_switch = False
fan_mode = ["slow", "medium","fast"]
fan_power = [700, 900, 1023]

def fan_mode_switch(value):
    interval = int(1023/3)
    for i in range(3):
        if value >= i * interval and value < (i+1)*interval:
            break
    return fan_mode[i], fan_power[i]

previous_mode, power = fan_mode_switch(pin0.read_analog())

while True:
    if pin12.read_digital():
        fan_switch = not fan_switch
        print('Fan status: ' + ('ON' if fan_switch else 'OFF'))
        while pin12.read_digital():
            sleep(100)
    if fan_switch:
        mode, power = fan_mode_switch(pin0.read_analog())
        if mode is not previous_mode:
            previous_mode = mode
            print("Fan mode: ", mode)
            pin8.write_analog(power)
    elif pin1.read_digital():
        fan_switch = True
        print('Fan status: ' + 'ON')
    else:
        previous_mode = 'OFF'
        pin8.write_analog(0)
    sleep(300)

程式碼解說

比起STEP3的程式碼,我們延伸了主結構中的if…else…,將fan_switch的狀態以外,再新增(elif)了一個motion sensor的狀態(pin1.read_digital),注意到motion sensor只能偵測是否有人靠近,所以使用的是數位的訊號(digital),它無法偵測距離多寡,而且如果身體靜止一段時間的話,也不會觸發motion sensor喔!

以下是我們最後完成的智慧風扇影片,可以用按鈕開關風扇,還可以用旋鈕調整轉速,並且還能用motion sensor在有人的時候自動開啟風扇!

 

相關文章:

 

 

 

 

[開箱]DFRobot Boson Starter Kit for BBC micro:bit

作者/攝影  曾吉弘
時間  30分鐘
成本
  • DFRobot Boson Starter Kit for BBC micro:bit
難度  *
材料表
  • DFRobot Boson Starter Kit for BBC micro:bit

本文要介紹DFRobot公司針對BBC micro:bit所推出的 BOSON kit 套件包(micro:bit另購),這樣可以讓您的專題更豐富喔

感謝DFRobot很快就寄出一套給我們玩,這次封面的色調走粉色系,看起來非常舒服。

其中最重要的就是這片micro:bit擴充板囉,上面有電源開關、六個周邊接頭、音量鍵以及耳機插孔(之前用microbit居然要剪線… 覺得不太方便)。當然原本板子上的0、1、2、3V與GND鱷魚夾頭也都在喔

 

盒子裡面有哪些東西呢?

  • micro:bit 之Boson 擴充板 x 1
  • 紅色按鈕 x 1
  • 紅色 LED 模組 x 1
  • 旋轉感測器(旋鈕式電位計) x 1
  • 聲音感測器 x 1
  • 動作感測器 x 1
  • 迷你風扇模組 x 1
  • 迷你伺服機 x 1
  • RGB LED 燈條 x 1
  • Micro USB 傳輸線 x 1
  • 3-Pin 傳輸線(連接microbit 與模組),短中各數條
  • 教學色卡 1批

 

盒子裡面提供了很多有趣的範例,馬上就可以開始玩喔,例如以下的彩虹燈,可以根據旋鈕來調整燈光顏色~

看看這些色卡,真的很漂亮。有四個馬上可以做出來的小專題喔!

(*圖片經同意引用自DFRobot網站)

 

相關文章: