Tag Archives: keras

[ AI人工智慧-神經運算 ] 淺談人工智慧實作,開源工具Tensorflow與安裝(Windows篇)

大家在網路、報章雜誌上是不是很常聽到AI人工智慧呢?2018年許多人在研究、開發AI的神經網路運算,您聽過神經網路運算嗎?今天與讀者們快速分享一些AI、神經網路運算資訊,以及我們設計人工神經網路實作課程時,在Windows系統上使用的一些工具。

作者/攝影

CAVEDU教育團隊 徐豐智

文章分類教學技術文
時間30分鐘
成本電腦
難度

**

材料表Window 10 作業系統

說到人工智慧,相關技術的人會想到機器視覺、自然語言⋯⋯等等專有名詞,今天與讀者們分享的AI課程,是神經網路運算的相關實作。

 

Google的Deepmind團隊使用了Alpha GO 挑戰世界棋王獲勝的事,大家還記得嗎?(快速回憶AlphaGO-連結,這項成果該團隊使用的是神經網路運算技術,工具是Tensorflow。Gmail的垃圾郵件判讀、Google相簿臉部識別、Google翻譯,Google在Tensorflow上以Opensource的方式開放出來,大家可按照自己想做的AI案例收集樣本資料,訓練AI判斷的模型。

 

今年九月起,CAVEDU教育團隊與微軟合作設計AI課程(微軟技術中心上機實作課程-人工智慧實務工作坊:故事連結基於這次經驗,與大家分享如何在Windows作業系統下,安裝AI相關工具套件。我們先介紹現在的AI實作上的一些分類,接著是Tensorflow與keras、Opencv等環境安裝教學。

 

淺談人工智慧實作

首先,有幾種與運算效能不強的硬體整合的AI方式(想直接安裝Tensorflow,可跳過這一段)。

 

一、使用物聯網將判斷交給雲端處理,並將處理結果回傳

終端裝置(樹莓派、Linkit7688⋯⋯)負責收集影像、語音資料,將這些影像、語音資料上傳至雲端AI(Google、Azure、IBM bluemix⋯⋯等),雲端AI判斷後,將判斷結果回傳至終端裝置,終端裝置再進行動作。

 

A、微軟認知服務,解析人的年齡、性別、情緒實作教學連結

 

B、Google語音助理的服務,將聲音上傳到Google,交由雲端處理(實作教學連結、影片連結)

 

C、IBM Bluemix服務做TJBOT聊天機器人(實作教學連結)

 

二、使用Opensouce的工具,建立自己的AI專案,訓練AI

建立判斷AI的工具,透過AI工具提供的演算法和判斷方法,收集相關資料(比如說,透過圖片判斷動物園的動物種類),訓練AI,提高AI的的推理能力(從可分別猩猩和大象的差別,提升至可分別猩猩和獼猴的差別)。

 

A、Tensorflow與keras的機器學習工具(相關文章連結)

 

B、Caffe的機器學習工具(相關文章連結)

 

三、邊緣運算、智慧邊緣:

結合訓練的AI,將運算交給終端裝置(手機、樹梅派⋯⋯等等),解決將資料傳給雲端,再回傳資料導致的延遲。(比如說,汽車上的AI,如果因網路不順,導致判斷過慢發生車禍等意外;又或者在製造業使用的機器手臂,判斷過慢導致產線的良率不穩。)

 

A、Nvidia的GPU顯示卡,幫助電腦運算

 

B、Intel的低功耗加速AI推理的運算棒(相關文章連結)

 

在Windows上安裝TensorFlow的環境

我們要開在Windows作業系統上安裝Tensorflow的教學。請將安裝的電腦,額外預留5GB的硬碟容量以安裝相關軟體。

 

安裝順序:

一、安裝Anaconda環境

二、建立獨立的Anacoonda(Python)虛擬環境

三、安裝TensorFlow 、 Keras、Opencv

四、執行手寫辨識範例

 

一、安裝Anaconda環境

對AI初學者來說,安裝TensorFlow環境、使用的套件雜亂,相互不匹配,是第一道難關。但Anaconda可將這件事變得很單純,因為Anaconda除了支援Windows,也支援Mac、Linux作業系統。之後有空,再跟大家分享在Windows App上安裝ubuntu作業系統。

 

請先至Anaconda網站上下載軟體,點選下圖左邊的Windows選項

https://www.anaconda.com/download/

圖1

 

選擇下載的安裝環境,有Python3、2兩種版本。因為許多的AI範例使用Python3,建議使用Python 3。並依照電腦規格,選擇64位元 / 32位元的版本下載。

圖2

 

點選下載的檔案,開始安裝,點選下一步、同意。

圖3

 

圖4

 

選擇是否只安裝在這一個Windows的帳號

圖5

 

決定安裝路徑。因為之後會訓練資料,請讀者們盡量選擇讀寫速度較快的硬碟。

圖6

 

點選加入Windows的環境變數(可不選,能讓Windows的CMD視窗也可以呼叫Anaconda),預設使用Python3.6。

圖7

 

安裝完成後,在開始的列表會出現Anaconda的相關工具。

圖8

 

二、建立獨立的Anacoonda(Python)虛擬環境

Python有許多相依的套件,建議讀者們在做不一樣的Python套件實測試時,可重新建立新的環境,每個新的環境會依照名稱顯示。

 

下圖是我建立兩個環境,分別命名為testlesson1、testtensorflow。

圖9

 

首先,在本機磁碟(C),新增一個資料夾[testAI],以便管理環境中的檔案,點選[Anaconda Prompt]。

圖10

 

圖11

 

指令:移動至資料夾[testAI]

>cd \testAI
圖12

 

指令:建立Anaconda環境

>conda create --name testAI python=3.6 anaconda

 

指令功能:

conda create:建立虛擬環境

-name testAI:環境名稱,取名為testAI

python=3.6:Python的版本為3.6

anaconda:建立環境時,會把Python相關的套件也一起安裝,例如:NumPy、SciPy等常用的套件,也有Jupyter Notebook。

圖13

 

Anaconda會詢問你該虛擬環境是否安裝這些套件,輸入指令y

>y
圖14

 

圖15

 

安裝完成後,您可以用下列兩個指令開啟 / 關閉虛擬環境:

>conda activate testAI

>conda deactivate
圖16

 

若成功開啟虛擬環境,命令列最左方的顯示會由(base)改為(testAI)。

圖17

 

三、安裝TensorFlow 、 Keras、Opencv

接著,我們要安裝一些訓練AI模型的套件,這些都是python相關的套件,您可以用pip安裝,也可以用conda安裝。

 

安裝Python的Tensorflow套件:

>conda install tensorflow
圖18

 

圖19

 

安裝Python的keras套件:

>conda install keras
圖20

 

圖21

 

安裝Python的opencv套件:

>conda install opencv
圖22

 

圖23

 

套件安裝的差不多了。如果您有想要訓練的資料集、執行的程式,可以放在資料夾[testAI]裡。

圖24

 

接著移動至指定的資料夾:

cd ./ms-agv-car-master/keras_source

 

回到上一層資料夾:

cd ..

 

指令功能:

cd .\ai-car\keras_source:移動資料夾到ai-car\keras_source

cd .. :回到上一層資料夾

五、執行手寫辨識範例

最後,我們執行一個訓練資料的手寫辨識範例,確認Tensorflow系統環境都沒有問題。

(資源來自keras中文文檔https://keras-cn.readthedocs.io/en/latest/

 

首先,安裝git套件。

>conda install git
圖26

 

圖27

 

接下來:

1、透過git下載keras的範例

git clone https://github.com/fchollet/keras.git

 

2、移動到範例資料夾

> cd ./keras/examples/

 

3、執行手寫辨識訓練資料,若執行未出現錯誤,恭喜您已安裝成功,可不用等待程式執行完畢,[Ctrl+C]直接跳出訓練畫面

> python mnist_mlp.py
圖28

 

今天的分享至此結束。盼望這篇文章能給讀者們一些幫助,下次見!

 

相關文章