Tag Archives: AI教育

[ 影片 ] 2018.11.01- CAVEDU觀點:如何看AI與科技教育(完整版)

拍攝

宗諭

剪輯、後製

怡婷

資料提供

豐智

製作協助

皇甫、鈺莨

主講人

阿吉老師曾吉弘

 

 

 

在這一集的「CAVEDU觀點」中,我們探討的主題是:AI與科技教育

總共有以下幾個重點:

 

  1. CAVEDU如何看AI人工智慧教學?(約開始於0:22)

  2. 科技教學方式一直改變,該怎麼辦?(約開始於2:35)

  3. CAVEDU如何設計課程?(約開始於4:53)

  4. CAVEDU如何在課程中導入AI人工智慧?(約開始於5:50)

  5. CAVEDU如何把AI人工智慧落實在大學、高中課堂上(約開始於6:30)

  6. 使用AI人工智慧進行視覺辨識,和使用OpenCV有何不同?(約開始於7:14)

  7. 設計樹莓派AI無人車的核心理念?(約開始於8:43)

  8. 什麼是邊緣運算?(約開始於9:32)

  9. 為何邊緣運算結合AI相關應用適合教學場域?(約開始於10:32)

  10. Intel Movidius神經運算棒介紹(約開始於10:51)

  11. 人工智慧實務工作坊(AGV)介紹(約開始於12:55)

 

重點相當多,讀者們可以根據自己想觀看的內容,選擇段落:

 

也歡迎大家訂閱我們的YouTube頻道,接收來自教育現場的AI與科技教育的訊息,謝謝。

 

相關文章

[ 影片 ] 2018.10.26- 阿吉老師線上講堂:CAVEDU教育團隊如何看AI與科技教育(上)

拍攝

宗諭

剪輯、後製

怡婷

資料提供

豐智

製作協助

皇甫、鈺莨

 

AI人工智慧的領域涵蓋廣泛,科技和教育的關鍵字每年都不斷更新、改變,究竟我們要怎樣學習,還有如何教育我們的學生、孩子,才能跟得上時代趨勢???歡迎夥伴們一起來看阿吉老師的影片分享:長期深耕科技教育的CAVEDU教育團隊,如何看AI與科技教育?

歡迎轉載、分享,謝謝。

 

相關文章

[ 介紹文 ] 2018.10.22- 7大關鍵特點,帶您認識CAVEDU的人工智慧課程與教具RKCar

文字整理

宗諭

照片

CAVEDU教育團隊

資料提供

豐智

審閱

CAVEDU教育團隊

 

AI時代已然來臨,各行各業的專業人士皆不斷思考如何將人工智慧應用至該領域。而身為教育工作者的您,也許正籌劃構思如何將AI引入教育現場,讓學生能更輕鬆、容易地學習人工智慧。

 

近兩年來,積極投入、規劃、執行AI教育的我們,目前提供給您最佳的解決方案是它:

 

樹莓派神經網路自走車套件(RKCar)

圖1

 

或許您想問:「這台車和一般的自走車有何不同?」好問題!如果只看外觀和硬體規格,還真沒什麼了不起的不一樣。然而,最大的不一樣是:

 

我們提供配套的教學方案,

保證能執行而且一定玩真的!

 

怎麼說?以下七大關鍵特點是我們AI課程教材的保證:

1.課程內容保證務實,不須擔心課程後續服務。

 

2.實戰課程記錄豐富,合作開課單位包括:微軟技術中心、INTEL、淡江大學、金門大學、新興科技教師增能工作坊⋯⋯等等,且課程邀約持續增加中。

 

3.直譯式Python,程式碼一定看得懂。

 

4.覺得AI很難嗎?我們帶您直接使用免費雲端AI玩應用。

 

5.透析AI大腦,帶您一探神經網路模型。

 

6.有效增加AI資料集的辨識力。

 

7.邊緣運算即刻辨識,不須網路也能完成課程。

 

以下是我們最新出爐、熱騰騰的課表,請參考:

人工智慧主題課程

教學目標:

  • 學習基礎Linux系統

  • 學習單板電腦硬體控制

  • 學習基礎模式識別、影像辨識

  • 結合雲端AI快速設計應用

  • 瞭解、實作AI神經網路運算

  • 瞭解、實作智慧邊緣、邊緣運算

教學內容

課程主題

學習內容

分配時數

備註

(一)樹莓派基礎學習

1.

基礎LINUX指令

2.

基礎Python應用

3.

基礎網路與遠端控制

12

使用Raspberry Pi

(二)硬體控制與影像處理

1.

樹莓派腳位控制

2.

Opencv基礎影像與人臉識別

3.

輪型機器人、機械手臂控制

12

使用Camera、RKCar、機械手臂

(三)雲端AI辨識

1.

情緒識別

2.

天氣預報

3.

語音助理

4.

聊天回話

5.

結合社群軟體應用

18

使用網際網路、Camera、麥克風、喇叭

(四)神經網路運算1

1.

不規則符號辨識

2.

資料集收集與分類

3.

資料預先處理與標記

12

使用攝影機、麥克風

(五)神經網路運算2

1.

訓練與輸出AI模型

2.

評估AI模型與應用

3.

提升AI的辨識能力

12

使用攝影機、麥克風

(六)物聯網邊緣運算

1.

如何使用雲端進行深度學習運算

2.

如何使用終端進行神經網路推理

3.

交通號誌、年齡、街道、生物、等範例應用

4.

如何加速神經網路推理

5.

如何設計人工智慧系統

12

神經運算棒

教學方法:

  • 以實作課程為主、知識授課為輔,配合當代科技應用發展,使課程盡可能以主題實作,與生活結合、廠商常使用的工具,以簡單易學為入門,了解當代科技應用的實作流程,帶給學生實體感,課後可深入學習相關技術

教學資源:

(一)教師研習營、業師教學、主題教學。

(二)相關書籍、講義、線上實作教學文章。

 

文章至此,如果您想更深入了解我們的「人工智慧」主題課程,或是洽詢上課時間,歡迎E-mail:service@cavedu.com

 

接下來,我們將透過一張圖片,向您詳細介紹RKCar的幾項特點:

圖2

 

結語

AI時代,需要有符合時代潮流的教具!RKCar套件化的構成,搭配經過多次實戰驗證的人工智慧主題課程,相信能帶給學生、學員,循序漸進且切入AI學習關鍵點的上課題驗!如果想直接入手RKCar,請洽機器人王國商城,謝謝。

 

相關文章

[ 介紹文 ]CAVEDU教育團隊如何看AI 與科技教育

作者/攝影

文:曾吉弘

圖:CAVEDU教育團隊

主題圖片:Designed by Starline

文章分類介紹文
成本X
難度

X

時間X

 

CAVEDU怎麼看 AI 人工智慧

近年來全世界都掀起了一股「大家來coding」的風潮,台灣政府也開始推動基礎程式教育,目標是讓孩子們能在學習程式設計的過程中培養基礎的運算思維(Computational thinking)能力,能對這個快速變動的環境有更多的好奇心與觀察力。另一方面,自從大陸在今年(2018) 4月於上海發表全球第一本AI高中教材《人工智能基礎》之後,大家好像都緊張了起來:

  • 業界:「不 AI 一下,好像不行?得趕快說自己是 AI 產業。

  • 家長、同學:「我要找 AI 相關科系!」(當年的生科與資管也是這樣?)

  • 學校老師:「把原本的課程名稱加上AI兩個字!

 

上述也許誇大了點,但科技領域關鍵字一日數變,AI 領域又包山包海,除了極少數頂尖研究者之外,又有誰敢說自己是 AI大師、AI領航者呢?

 

AI 等資訊科技是現在進行式,今天弄得要死要活的東西,明天說不定點點按鈕就好了?近兩年物聯網教學就是很好的例證,使用 LinkIt 7697 搭配 MCS 雲服務,已經能讓國小學生也能做出簡單的物聯網專案,從網頁與手機就能監看感測器資訊或控制開發板。在此的並非說網路通訊協定不重要,而是對於非專業人士來說,這樣的設計能幫助他們聚焦在最重要的事情上:資料。如果資料對於開發者來說是有意義或是重要的,那先從資料本身開始是個相當好的出發點。

圖1

 

圖2

 

關鍵字會變,但流程與理論基礎不會。CAVEDU從2008年開始使用樂高機器人來教學(如果要回溯到我與鄭建彥最開始接觸樂高的話,那是1999年的RCX了),一路邁入手機App (Android / App Inventor@2010)、互動聯網裝置(Arduino / Rpi / LinkIt…@2013)、物聯網(@2015) 到去年開始如野火燎原一般的 AI。如果只追關鍵字的話,真的會無所適從。

 

根據美國麻省理工學院媒體實驗室終身幼兒園小組的Mitchel Resnick教授表示,幼兒(小學前)時期可說是我們一生中最具創造力的時候。該團隊所開發的 Scratch 已經是小學階段的最主要圖形化程式介面之一,Resnick教授也主張 「Scratch 是幫助孩子們成為創意思考者(Creative Thinker)的絕佳平台」,並致力於讓 Scratch 「很簡單」,他認為程式提供愈多功能或愈多元件反而會限縮孩子們的創造力。(關於創意思考者,請參考 Learning Creative Learning 課程,正體中文由阿吉老師與諸多好朋友一起翻譯完成。)

 

另一方面,MIT App Inventor小組創辦人 Hal Abelson 教授(阿吉老師於2017- 2018 於該實驗室擔任訪問學者)也說:「如果資訊科技一日數變,那為什麼還要讓孩子們和他們的祖父母一樣的方式來學習?” 因此,在這股浪潮下也有另一種反思:「是否人人都需要學如何寫程式?這樣同質化的過程會對孩子造成怎樣的影響?

 

CAVEDU的理念是:根據當前的科技發展趨勢,針對不同學習課群提供合適的教學內容。

 

對於孩子來說,好玩最重要

圖3

 

圖4

 

點我觀看與Hal Abelson教授的訪談   /   點我觀看與Mitchel Resnick教授的訪談

 

使用 Raspberry Pi 實作AI 視覺辨識無人小車

AI 對多數人來說,還是太虛無飄渺了。CAVEDU 為了讓學生理解 AI 諸多領域中最容易有感也是最容易實踐的:視覺辨識,我們使用 Raspberry Pi B3+ (後簡稱 Pi3)所設計的 「邊緣運算 AI 無人自駕小車」。

 

這是我們認為對於基礎 AI 視覺應用的最佳教學套件。之所以選用 Pi3 自然是因為其性價比以及豐富的教學資源,當年還是 Pi 2的時候就有相當不錯的 OpenCV 視覺追蹤效果,各樣的函式庫套件也非常豐富,一下子很多專題都可以使用它來完成,與Arduino 兩者號稱是學生專題救星呢(笑)!

 

AI 視覺應用的難點在於收集影像資料。喜歡養貓的阿吉老師開玩笑說:「我要幫我家的貓要拍多少張照片都沒問題,但是要蒐集十種不同的貓就難囉!」我們所設計的課程會帶學生體驗完整的訓練流程,不使用現成的資料集(因為訓練結果不會差太多),而是針對無人小車的場地實際收集影像,標記,最後選定模型來進行訓練。其中每一個環節都會影響到小車最終的辨識結果。一定有感!

圖5 學員自行收集的影像資料

 

圖6 AI視覺辨識課程實況

 

圖7 視覺辨識課程使用的AI無人小車

 

邊緣運算?

邊緣運算是指終端裝置也具有一定的能力來處理資料 ,可以加快資料的處理與傳送速度,只要把運算後的結果而非原始資料丟回雲端 (不過不一定什麼事情都要與雲端結合,後續會繼續討論)即可,自然能大幅減少因網路頻寬受限而產生的延遲。

 

例如就經濟面的考量,如果要做到抓到臉部之後能進一步辨識情緒/微笑或五官位置這類功能的話。後面的進階功能可以使用 Microsoft Azure 認知服務 或其他類似的雲端服務來做到,但這些雲端服務都需要付費(或部分免費),且多數需要信用卡來進行身份認證,這件事在多數學校就卡關了吧…   因此我們在課程設計上就朝「終端裝置就能做到」這個方向來努力。在此簡單做一些比較:

 

邊緣運算 VS 雲端服務

  1. 程式碼開源雲端服務很厲害,但它不會告訴你他是怎麼算的。我們能做的只能相信這些雲端服務供應商的結果。例如:Facebook 每天都有一大堆人在打卡與自拍,合理推斷在超大量的資料之下,Facebook在辨識臉孔上非常準,當然事實也是如此。如果把這些運算改到邊緣裝置來做的話,由於程式碼已知,就能循序漸進讓學生學到更多東西,也可以針對後續的情境來擴充。
  2. 不受網路環境影響:相信各位老師都體認到了:教室可以上網,不代表可以進行物聯網教學。能夠進行物聯網課程的話,教室的 router 要很夠力,基本要能夠負擔 「上課人數 x 3」的連線數:聯網裝置 + 手機 + 電腦 都要在同一個網段下才行。因此20人上課,連線數的基本需求就是 60。已經有許多學校著手升級網路基本設備,非常欣慰。
  3. 運算即時:以 CAVEDU 的AI教學車為例,這樣的情境就需要即時,而非連結雲端。Rpi 的速度不算太快,拍照上傳雲端,呼叫API,收到回傳結果來決定車子動作,這個過程再怎麼快也要3~5秒,這樣就算偵測到什麼東西,車子也已經撞牆了。因此有些標榜AI語音辨識結合自走車控制,好像有點奇怪⋯⋯。

 

作為邊緣運算裝置,如何提升 Raspberry Pi 的算力?

CAVEDU 的 Pi3 AI無人小車,直接讓 Rpi 執行使用 Keras 神經網路架構來進行視覺辨識,辨識張數每秒約2~5張(0.5 ~ 0.2秒/張)。這大大限制了車子的移動速度。畢竟,Pi 3只要開多一點網頁,系統就到100%了,何況大量的模型訓練呢?在不更換主板的前提下,要如何提升 Raspberry Pi 的算力呢?

 

Intel 所推出的 Movidius NCS神經運算棒來得恰到好處,可以把最耗資源的運算分一點去做。以 Pi3 小車來說,只要搭配一隻 Intel Movidius NCS 就可以讓每秒的張數提升到每秒約14~20張(0.07 ~ 0.05秒/張)。算是相當經濟實惠不錯的選擇,當然也可以期待 Pi 4就是了。根據 Intel 原廠文件表示,可以串接多隻 Movidius 達到更好的效能。

 

的確,覺得Pi 效能不佳的讀者,當然可以購買更高級的硬體例如 Nvidia TX1,但對於學校來說,經費可以買幾台呢?買一台大家圍著看嗎?另一方面,課程的延伸性呢?本課程已經與台灣微軟技術中心合作開辦多梯次的人工智慧實務工作坊(AGV),並搭配其 Azure 雲服務下的資料科學虛擬機器 (Data Science Virtual Machine) 來加速神經網路訓練速度,適合業界人士使用。另一方面,對於教學單位來說,可使用個人電腦來進行訓練,使用我們所提供的架構使用一般的電腦也可以完成訓練,並搭配 Pi3 完成至少一學期的課程(課表已經完成,歡迎來信索取或找我們去辦研習喔!E-mail:service@cavedu.com

圖8 Intel Movidius NCS神經運算棒

 

CAVEDU 提供各式各樣的最新課程,當第一線教學者的強力後盾。如果您也認同CAVEDU的理念,不喜歡好高騖遠的名詞大戰,歡迎來CAVEDU走走看看。

 

相關文章