Category Archives: 邊緣運算

[ 介紹文 ]CAVEDU教育團隊如何看AI 與科技教育

作者/攝影

文:曾吉弘

圖:CAVEDU教育團隊

主題圖片:Designed by Starline

文章分類介紹文
成本X
難度

X

時間X

 

CAVEDU怎麼看 AI 人工智慧

近年來全世界都掀起了一股「大家來coding」的風潮,台灣政府也開始推動基礎程式教育,目標是讓孩子們能在學習程式設計的過程中培養基礎的運算思維(Computational thinking)能力,能對這個快速變動的環境有更多的好奇心與觀察力。另一方面,自從大陸在今年(2018) 4月於上海發表全球第一本AI高中教材《人工智能基礎》之後,大家好像都緊張了起來:

  • 業界:「不 AI 一下,好像不行?得趕快說自己是 AI 產業。

  • 家長、同學:「我要找 AI 相關科系!」(當年的生科與資管也是這樣?)

  • 學校老師:「把原本的課程名稱加上AI兩個字!

 

上述也許誇大了點,但科技領域關鍵字一日數變,AI 領域又包山包海,除了極少數頂尖研究者之外,又有誰敢說自己是 AI大師、AI領航者呢?

 

AI 等資訊科技是現在進行式,今天弄得要死要活的東西,明天說不定點點按鈕就好了?近兩年物聯網教學就是很好的例證,使用 LinkIt 7697 搭配 MCS 雲服務,已經能讓國小學生也能做出簡單的物聯網專案,從網頁與手機就能監看感測器資訊或控制開發板。在此的並非說網路通訊協定不重要,而是對於非專業人士來說,這樣的設計能幫助他們聚焦在最重要的事情上:資料。如果資料對於開發者來說是有意義或是重要的,那先從資料本身開始是個相當好的出發點。

圖1

 

圖2

 

關鍵字會變,但流程與理論基礎不會。CAVEDU從2008年開始使用樂高機器人來教學(如果要回溯到我與鄭建彥最開始接觸樂高的話,那是1999年的RCX了),一路邁入手機App (Android / App Inventor@2010)、互動聯網裝置(Arduino / Rpi / LinkIt…@2013)、物聯網(@2015) 到去年開始如野火燎原一般的 AI。如果只追關鍵字的話,真的會無所適從。

 

根據美國麻省理工學院媒體實驗室終身幼兒園小組的Mitchel Resnick教授表示,幼兒(小學前)時期可說是我們一生中最具創造力的時候。該團隊所開發的 Scratch 已經是小學階段的最主要圖形化程式介面之一,Resnick教授也主張 「Scratch 是幫助孩子們成為創意思考者(Creative Thinker)的絕佳平台」,並致力於讓 Scratch 「很簡單」,他認為程式提供愈多功能或愈多元件反而會限縮孩子們的創造力。(關於創意思考者,請參考 Learning Creative Learning 課程,正體中文由阿吉老師與諸多好朋友一起翻譯完成。)

 

另一方面,MIT App Inventor小組創辦人 Hal Abelson 教授(阿吉老師於2017- 2018 於該實驗室擔任訪問學者)也說:「如果資訊科技一日數變,那為什麼還要讓孩子們和他們的祖父母一樣的方式來學習?” 因此,在這股浪潮下也有另一種反思:「是否人人都需要學如何寫程式?這樣同質化的過程會對孩子造成怎樣的影響?

 

CAVEDU的理念是:根據當前的科技發展趨勢,針對不同學習課群提供合適的教學內容。

 

對於孩子來說,好玩最重要

圖3

 

圖4

 

點我觀看與Hal Abelson教授的訪談   /   點我觀看與Mitchel Resnick教授的訪談

 

使用 Raspberry Pi 實作AI 視覺辨識無人小車

AI 對多數人來說,還是太虛無飄渺了。CAVEDU 為了讓學生理解 AI 諸多領域中最容易有感也是最容易實踐的:視覺辨識,我們使用 Raspberry Pi B3+ (後簡稱 Pi3)所設計的 「邊緣運算 AI 無人自駕小車」。

 

這是我們認為對於基礎 AI 視覺應用的最佳教學套件。之所以選用 Pi3 自然是因為其性價比以及豐富的教學資源,當年還是 Pi 2的時候就有相當不錯的 OpenCV 視覺追蹤效果,各樣的函式庫套件也非常豐富,一下子很多專題都可以使用它來完成,與Arduino 兩者號稱是學生專題救星呢(笑)!

 

AI 視覺應用的難點在於收集影像資料。喜歡養貓的阿吉老師開玩笑說:「我要幫我家的貓要拍多少張照片都沒問題,但是要蒐集十種不同的貓就難囉!」我們所設計的課程會帶學生體驗完整的訓練流程,不使用現成的資料集(因為訓練結果不會差太多),而是針對無人小車的場地實際收集影像,標記,最後選定模型來進行訓練。其中每一個環節都會影響到小車最終的辨識結果。一定有感!

圖5 學員自行收集的影像資料

 

圖6 AI視覺辨識課程實況

 

圖7 視覺辨識課程使用的AI無人小車

 

邊緣運算?

邊緣運算是指終端裝置也具有一定的能力來處理資料 ,可以加快資料的處理與傳送速度,只要把運算後的結果而非原始資料丟回雲端 (不過不一定什麼事情都要與雲端結合,後續會繼續討論)即可,自然能大幅減少因網路頻寬受限而產生的延遲。

 

例如就經濟面的考量,如果要做到抓到臉部之後能進一步辨識情緒/微笑或五官位置這類功能的話。後面的進階功能可以使用 Microsoft Azure 認知服務 或其他類似的雲端服務來做到,但這些雲端服務都需要付費(或部分免費),且多數需要信用卡來進行身份認證,這件事在多數學校就卡關了吧…   因此我們在課程設計上就朝「終端裝置就能做到」這個方向來努力。在此簡單做一些比較:

 

邊緣運算 VS 雲端服務

  1. 程式碼開源雲端服務很厲害,但它不會告訴你他是怎麼算的。我們能做的只能相信這些雲端服務供應商的結果。例如:Facebook 每天都有一大堆人在打卡與自拍,合理推斷在超大量的資料之下,Facebook在辨識臉孔上非常準,當然事實也是如此。如果把這些運算改到邊緣裝置來做的話,由於程式碼已知,就能循序漸進讓學生學到更多東西,也可以針對後續的情境來擴充。
  2. 不受網路環境影響:相信各位老師都體認到了:教室可以上網,不代表可以進行物聯網教學。能夠進行物聯網課程的話,教室的 router 要很夠力,基本要能夠負擔 「上課人數 x 3」的連線數:聯網裝置 + 手機 + 電腦 都要在同一個網段下才行。因此20人上課,連線數的基本需求就是 60。已經有許多學校著手升級網路基本設備,非常欣慰。
  3. 運算即時:以 CAVEDU 的AI教學車為例,這樣的情境就需要即時,而非連結雲端。Rpi 的速度不算太快,拍照上傳雲端,呼叫API,收到回傳結果來決定車子動作,這個過程再怎麼快也要3~5秒,這樣就算偵測到什麼東西,車子也已經撞牆了。因此有些標榜AI語音辨識結合自走車控制,好像有點奇怪⋯⋯。

 

作為邊緣運算裝置,如何提升 Raspberry Pi 的算力?

CAVEDU 的 Pi3 AI無人小車,直接讓 Rpi 執行使用 Keras 神經網路架構來進行視覺辨識,辨識張數每秒約2~5張(0.5 ~ 0.2秒/張)。這大大限制了車子的移動速度。畢竟,Pi 3只要開多一點網頁,系統就到100%了,何況大量的模型訓練呢?在不更換主板的前提下,要如何提升 Raspberry Pi 的算力呢?

 

Intel 所推出的 Movidius NCS神經運算棒來得恰到好處,可以把最耗資源的運算分一點去做。以 Pi3 小車來說,只要搭配一隻 Intel Movidius NCS 就可以讓每秒的張數提升到每秒約14~20張(0.07 ~ 0.05秒/張)。算是相當經濟實惠不錯的選擇,當然也可以期待 Pi 4就是了。根據 Intel 原廠文件表示,可以串接多隻 Movidius 達到更好的效能。

 

的確,覺得Pi 效能不佳的讀者,當然可以購買更高級的硬體例如 Nvidia TX1,但對於學校來說,經費可以買幾台呢?買一台大家圍著看嗎?另一方面,課程的延伸性呢?本課程已經與台灣微軟技術中心合作開辦多梯次的人工智慧實務工作坊(AGV),並搭配其 Azure 雲服務下的資料科學虛擬機器 (Data Science Virtual Machine) 來加速神經網路訓練速度,適合業界人士使用。另一方面,對於教學單位來說,可使用個人電腦來進行訓練,使用我們所提供的架構使用一般的電腦也可以完成訓練,並搭配 Pi3 完成至少一學期的課程(課表已經完成,歡迎來信索取或找我們去辦研習喔!E-mail:service@cavedu.com

圖8 Intel Movidius NCS神經運算棒

 

CAVEDU 提供各式各樣的最新課程,當第一線教學者的強力後盾。如果您也認同CAVEDU的理念,不喜歡好高騖遠的名詞大戰,歡迎來CAVEDU走走看看。

 

相關文章

 

 

[ AI人工智慧-神經運算 ] 淺談人工智慧實作,開源工具Tensorflow與安裝(Windows篇)

大家在網路、報章雜誌上是不是很常聽到AI人工智慧呢?2018年許多人在研究、開發AI的神經網路運算,您聽過神經網路運算嗎?今天與讀者們快速分享一些AI、神經網路運算資訊,以及我們設計人工神經網路實作課程時,在Windows系統上使用的一些工具。

作者/攝影

CAVEDU教育團隊 徐豐智

文章分類教學技術文
時間30分鐘
成本電腦
難度

**

材料表Window 10 作業系統

說到人工智慧,相關技術的人會想到機器視覺、自然語言⋯⋯等等專有名詞,今天與讀者們分享的AI課程,是神經網路運算的相關實作。

 

Google的Deepmind團隊使用了Alpha GO 挑戰世界棋王獲勝的事,大家還記得嗎?(快速回憶AlphaGO-連結,這項成果該團隊使用的是神經網路運算技術,工具是Tensorflow。Gmail的垃圾郵件判讀、Google相簿臉部識別、Google翻譯,Google在Tensorflow上以Opensource的方式開放出來,大家可按照自己想做的AI案例收集樣本資料,訓練AI判斷的模型。

 

今年九月起,CAVEDU教育團隊與微軟合作設計AI課程(微軟技術中心上機實作課程-人工智慧實務工作坊:故事連結基於這次經驗,與大家分享如何在Windows作業系統下,安裝AI相關工具套件。我們先介紹現在的AI實作上的一些分類,接著是Tensorflow與keras、Opencv等環境安裝教學。

 

淺談人工智慧實作

首先,有幾種與運算效能不強的硬體整合的AI方式(想直接安裝Tensorflow,可跳過這一段)。

 

一、使用物聯網將判斷交給雲端處理,並將處理結果回傳

終端裝置(樹莓派、Linkit7688⋯⋯)負責收集影像、語音資料,將這些影像、語音資料上傳至雲端AI(Google、Azure、IBM bluemix⋯⋯等),雲端AI判斷後,將判斷結果回傳至終端裝置,終端裝置再進行動作。

 

A、微軟認知服務,解析人的年齡、性別、情緒實作教學連結

 

B、Google語音助理的服務,將聲音上傳到Google,交由雲端處理(實作教學連結、影片連結)

 

C、IBM Bluemix服務做TJBOT聊天機器人(實作教學連結)

 

二、使用Opensouce的工具,建立自己的AI專案,訓練AI

建立判斷AI的工具,透過AI工具提供的演算法和判斷方法,收集相關資料(比如說,透過圖片判斷動物園的動物種類),訓練AI,提高AI的的推理能力(從可分別猩猩和大象的差別,提升至可分別猩猩和獼猴的差別)。

 

A、Tensorflow與keras的機器學習工具(相關文章連結)

 

B、Caffe的機器學習工具(相關文章連結)

 

三、邊緣運算、智慧邊緣:

結合訓練的AI,將運算交給終端裝置(手機、樹梅派⋯⋯等等),解決將資料傳給雲端,再回傳資料導致的延遲。(比如說,汽車上的AI,如果因網路不順,導致判斷過慢發生車禍等意外;又或者在製造業使用的機器手臂,判斷過慢導致產線的良率不穩。)

 

A、Nvidia的GPU顯示卡,幫助電腦運算

 

B、Intel的低功耗加速AI推理的運算棒(相關文章連結)

 

在Windows上安裝TensorFlow的環境

我們要開在Windows作業系統上安裝Tensorflow的教學。請將安裝的電腦,額外預留5GB的硬碟容量以安裝相關軟體。

 

安裝順序:

一、安裝Anaconda環境

二、建立獨立的Anacoonda(Python)虛擬環境

三、安裝TensorFlow 、 Keras、Opencv

四、執行手寫辨識範例

 

一、安裝Anaconda環境

對AI初學者來說,安裝TensorFlow環境、使用的套件雜亂,相互不匹配,是第一道難關。但Anaconda可將這件事變得很單純,因為Anaconda除了支援Windows,也支援Mac、Linux作業系統。之後有空,再跟大家分享在Windows App上安裝ubuntu作業系統。

 

請先至Anaconda網站上下載軟體,點選下圖左邊的Windows選項

https://www.anaconda.com/download/

圖1

 

選擇下載的安裝環境,有Python3、2兩種版本。因為許多的AI範例使用Python3,建議使用Python 3。並依照電腦規格,選擇64位元 / 32位元的版本下載。

圖2

 

點選下載的檔案,開始安裝,點選下一步、同意。

圖3

 

圖4

 

選擇是否只安裝在這一個Windows的帳號

圖5

 

決定安裝路徑。因為之後會訓練資料,請讀者們盡量選擇讀寫速度較快的硬碟。

圖6

 

點選加入Windows的環境變數(可不選,能讓Windows的CMD視窗也可以呼叫Anaconda),預設使用Python3.6。

圖7

 

安裝完成後,在開始的列表會出現Anaconda的相關工具。

圖8

 

二、建立獨立的Anacoonda(Python)虛擬環境

Python有許多相依的套件,建議讀者們在做不一樣的Python套件實測試時,可重新建立新的環境,每個新的環境會依照名稱顯示。

 

下圖是我建立兩個環境,分別命名為testlesson1、testtensorflow。

圖9

 

首先,在本機磁碟(C),新增一個資料夾[testAI],以便管理環境中的檔案,點選[Anaconda Prompt]。

圖10

 

圖11

 

指令:移動至資料夾[testAI]

>cd \testAI
圖12

 

指令:建立Anaconda環境

>conda create --name testAI python=3.6 anaconda

 

指令功能:

conda create:建立虛擬環境

-name testAI:環境名稱,取名為testAI

python=3.6:Python的版本為3.6

anaconda:建立環境時,會把Python相關的套件也一起安裝,例如:NumPy、SciPy等常用的套件,也有Jupyter Notebook。

圖13

 

Anaconda會詢問你該虛擬環境是否安裝這些套件,輸入指令y

>y
圖14

 

圖15

 

安裝完成後,您可以用下列兩個指令開啟 / 關閉虛擬環境:

>conda activate testAI

>conda deactivate
圖16

 

若成功開啟虛擬環境,命令列最左方的顯示會由(base)改為(testAI)。

圖17

 

三、安裝TensorFlow 、 Keras、Opencv

接著,我們要安裝一些訓練AI模型的套件,這些都是python相關的套件,您可以用pip安裝,也可以用conda安裝。

 

安裝Python的Tensorflow套件:

>conda install tensorflow
圖18

 

圖19

 

安裝Python的keras套件:

>conda install keras
圖20

 

圖21

 

安裝Python的opencv套件:

>conda install opencv
圖22

 

圖23

 

套件安裝的差不多了。如果您有想要訓練的資料集、執行的程式,可以放在資料夾[testAI]裡。

圖24

 

接著移動至指定的資料夾:

cd ./ms-agv-car-master/keras_source

 

回到上一層資料夾:

cd ..

 

指令功能:

cd .\ai-car\keras_source:移動資料夾到ai-car\keras_source

cd .. :回到上一層資料夾

五、執行手寫辨識範例

最後,我們執行一個訓練資料的手寫辨識範例,確認Tensorflow系統環境都沒有問題。

(資源來自keras中文文檔https://keras-cn.readthedocs.io/en/latest/

 

首先,安裝git套件。

>conda install git
圖26

 

圖27

 

接下來:

1、透過git下載keras的範例

git clone https://github.com/fchollet/keras.git

 

2、移動到範例資料夾

> cd ./keras/examples/

 

3、執行手寫辨識訓練資料,若執行未出現錯誤,恭喜您已安裝成功,可不用等待程式執行完畢,[Ctrl+C]直接跳出訓練畫面

> python mnist_mlp.py
圖28

 

今天的分享至此結束。盼望這篇文章能給讀者們一些幫助,下次見!

 

相關文章